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Abstract-Wall heat radiation in a long vertical cylinder heated from below increases critical Rayleigh 
number by up to a factor of three. The analysis presented explains why initiation of natural convection 
in a gas-filled honeycomb structure occurs at a Rayleigh number higher than that necessary when the same 

honeycomb is filled wiih an infrared-opaque liquid. 

NOMENCLATURE 

area ; 
vertical wave number ; 
diameter ; 
shape factor ; 
irradiation ; 
dimensionless irradiation ; 
fluid thermal conductivity; 
equivalent infinite wall conductivity ; 
equivalent conductivity with radia- 
tion ; 
wall material conductivity ; 
circumferential wave number ; 
radiant heat flux into wall; 
dimensionless amplitude of radiation ; 
radius ; 
Rayleigh number ; 
radiation integral ; 
wall thickness ; 
absolute temperature level ; 
temperature perturbation ; 
wall temperature perturbation ; 
vertical coordinate; 
vertical temperature gradient ; 
wall emissivity ; 

vertical variable of integration; 

radial dependence of T’; 
circumferential variable; 
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6, Stefan-Boltzmann constant ; 

4, circumferential angle. 

INTRODUCTION 

FROM the works of Ostroumov [l], Yih [2] and 
others [3, 43 it is well-known that the Rayleigh 
number at which thermal convection initiates in 
a long vertical cylinder filled with fluid and 
heated from below varies significantly with wall 
conductivity and wall thickness. Ostroumov [l] 
presents a derivation for the conductivity K, of 
an equivalent infinitely thick wall in terms of the 
actual wall conductivity and thickness. For a 
cylinder wall insulated on the exterior, his 
result, corrected for a typographical error, is 

K, = K,[l - d2/(d + 2t,)‘]/[l + d2/(d 

+ 2t,J2]. (1) 

For a thin wall equation (1) reduces to 

K, = 2K,t,/d. (2) 

Ostroumov then gives critical Rayleigh number 
R based on the mean vertical temperature 
gradient and radius for a cylinder filled with a 
fluid of conductivity K in his Table II as a 
function of KJK. Rayleigh number increases by 
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a factor of 3 as the conductivity ratio increases 
from zero to infinity. 

Applied workers interested in the prediction 
of heat transfer through gas filled nonmetallic 
honeycomb structures may, in applying the 
results of Ostroumov, be led to a value of 
critical Rayleigh number up to three times too 
small, if they fail to account for thermal radiation 
exchange between wall elements. It is the purpose 
of this work to derive the wall radiation terms 
affecting stability in a long vertical right circular 
cylinder filled with a diathermanous gas and 
subjected to a destabilizing axial temperature 
gradient. 

THEORY 

A fluid with an undisturbed temperature 
T, - /3z may be perturbed so that the tempera- 
ture changes a small amount T’. Ostroumov [l] 
and Yih [2] considered a disturbance of the 
form 

T’(r, 4, z) = @d/2) e(r) cos bz cos n& (3) 

where, because of the principle of exchange of 
stabilities [S], time dependency does not enter 
explicitly. The perturbation is subject to side 
wall boundary conditions. 

-Kq _ = _gT!Y 
I - d/2 ar r = d/2, 

‘:I, = d/2 = T'I, = d/2. 

(4) 

Radiation in a diathermanous fluid affects only 
the boundary condition; it may be accounted 
for by adding the radiant heat flux to equation 

(4) 

_KaTI I ear r= 

= 
42 

TiVIr 

4 ,? 

(4-d 

It may be seen by comparison of equations (3), 
(4) and (4a) that Ostroumov’s analysis can be 
taken over in its entirety, provided qr is of the 
form 

41 = K/IQ cos bz cos n4, (5) 

where Q is a dimensionless constant. This 
situation will be shown to hold true for a gray 
diffuse interior cylinder wall and small tempera- 
ture differences. The result will be that a radia- 
tion contribution should be added to K, to give 
Kz to be used in place of K, in Ostroumov’s 
,results. 

Consider a location $i, z1 on the inside wall 
of a long cylinder of unit radius The irradiation 
is for gray, perfectly diffuse walls [6] 

+m +x 

H(&,z,l = j 1 baT24 
-cc -I 

+- t1 - E)H(42?Z2)1d~ 2 d& dz2, (6) 

dF [l - cos(42 - 411’ -= 
dA 7r{2[1 - cos (42 - $i)] + (z2 - z,,‘}” 

(7) 

For small fid/To it is permissible to linearize, 

aT: = aT; + 4oT; (-flz2 + T;), (8) 

H@#J, d = oT;: - 4aT; /.Iz 

+ 4aT; @d/2) H*(+, z). (9) 

Introducing equations (8) and (9) into (6), 
changing variables of integration from z2 to 
i = z2 - zi, and introducing 0 from equation 
(3) and (4) gives 

+m +x 

H*bh,z,) = ss [&e(l) cos b([ + Zi) 

-m -R 

cos n42 + (1 - ~)H*]gd4~ d5. (10) 

The term arising from 4aT~fiz, drops out by 
virtue of the symmetry of the kernel dF/dA. 
Multiplying and dividing under the integral by 
cos n$2 cos bzz and changing the variable of 
integration from & to { = & - & yields 
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+oli +n 

H*(#,, 21) = SS[ &e(l) 
-m --II 

+ (1 - 4 
I-r*trpzv 221 

cos nij2 cos bz, 1 

[cos b[ cos bz, - sin b[ sin bz,] 

[cos n< cos n@, - sin nc sin n4, J 

$Kd:. (11) 

Since the kernel dF/dA is even with respect to 
< and 5, the solution is 

H*(&. 21) = {&@?/[I - (1 - E? $8 (b)]f 

e(1) cos n#, cos bzt, (12) 

tm in 

S,(b) = ss t1 - cos<]2cosntcosb( 

n[2(1 - cos 5) -I” C212 
dt d5. 

-m -x 

(13) 

For either the adiabatic or the perfectly con- 
ducting wall the mode of disturbance b = 0, 
n = 1 is the most unstable one. These values are 
consistent with the Ostroumov analysis. Equa- 
tion (13) yields in this case S,(O) 2: -3. 

The heat flux into the wall is given by the 
radiation absorbed less that emitted, EH - 
MT:, which gives 

4r = -4soT: @d/2) ([I - %(@I/ 

[l - (1 - E)&(b)]) S(1) cos bz cos n& (14) 

Comparison of equations (5) and (14) yields the 
dimensionless quantity Q which may be sub- 
stituted into equation (4a) to obtain the equiva- 
lent conductivity including the effect of radiation. 
For n = 1, b = 0, there is found 

KS = K, + @T&i) [2&/(1 - c/4)]. (15) 

DISCUSSION 

Consider a commercially available phenolic 
fiberglass honeycomb, Hexcell Products HRP 
3/4 GF 13-L9, with an inscribed circle diameter 
d = 19.1 mm and half wall thickness t, = 
0.102 mm. At room temperature Ke/K,ir = 0.14, 
while KfjK,, is approximately 1.0. From 
Ostrowmov’s Table II the first value yields 
R = 75, while the second value yields the correct 
result of 105, a value 40 per cent larger. The 
difference can be larger for larger diameters ; 
higher temperatures; thinner, less conducting 
walls; or less conducting gases. 

The effect of wall radiation to stabilize an 
infrared transparent fluid in a cylinder with 
nonconducting walls, demonstrated by our de- 
velopment leading to equation (15), is readily 
understandable from a physical point of view. If 
a perturbation starts an upflow in one half of a 
cylinder and a downflow in the other, the wall 
close to the warm upflow drains energy from it 
and radiates the energy to the wall close to the 

cool downflow and in this manner helps damp 
the convection. 
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EFFET DU RAYONNEMENT DE‘LA PAR01 SUR L’INSTABILITfi THERMIQUE DANS 
UN CYLINDRE VERTICAL 

R&nn&---Le rayonnement thermique de la paroi dans tm long cyIindre vertical chauffk depuis sa base 
accroit le nombre de Rayleigh critique en le multipliant par un facteur atteignant trois. L’analyse prtsentCe 
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exphque pourquoi l’initiation de Ia convection naturehe dans une structure en nid d’abeille remphe de 
gaz se produit a un nombre de Rayleigh plus BevC que dans ie cas de la m&me structure emplie dun tiquide 

opaque au rayonnement infrarouge. 

DIE WIRKUNG DER WAND-STRAHLUNG AUF DIE THERMISCHE INSTABILITAT IN 
EINEM VERTIKALEN ZYLINDER 

Zusammenfassung-Warmestrahlung von der Wand in einem langen vertikalen Zylinder, der von unten 
beheizt wird, vergrossert die kritische Rayleigh-Zal bis zu einem Faktor von drei. Die gegebene Analyse 
erkllrt, warum der Beginn von nattirlicher Konvektion in einer gas-geftillten Honigwabenstruktur bei einer 
htiheren Rayleigh-Zahl geschieht, als dafiir notig ist, falls die gleiche Honigwabe mit einer im Infraroten 

undurchsichtigen Fliissigkeit gehiilt ist. 


